Circuit Notes Part 2

Series circuits

A series circuit has	1	pat	hway(s).
This means current m	ust go th	rough <u>C</u>	w L
resistors. Since they a	re going	through	ı all
resistors there is	nigh_	resistan	ce. Since
there is high resistanc	e there	will be	
lwcurre	nt inten	sity. If yo	ou add
another resistor to the	e circuit	the resis	stance of
the circuit	<u>se 5</u> W	hich will	cause the
current intensity to	decr	Lane	·•
Therefore, current int	ensity ar	nd resist	ance have
an <u>Inverse</u>	_ relatio	nship.	
If you increase the pov	wer supp	oly volta	ge, the
resistance will	stem the	Save	_, but the
current intensity will _			
Resistors	·	effect	voltage
coming from the power	er suppl	y and the	e voltage
from the power suppl	У		
does not	affe	ct resisto	ors in the
circuit.			
In I. I	L		1.5
•.5 0 ·3	A	A 0.1	

Parallel circuit

A parallel circuit has ________ pathway(s).

This means current will be _______ amongst the resistors. Since current is not going through each resistor, the resistance of the circuit is _______. Since the resistance is low, the current intensity of the circuit will be ________. Current intensity and resistance still have an _______. Current intensity and relationship. As you add light bulbs, the brightness ________ because each light bulb is getting the total voltage.

To summarize:

Series circuit = 1 pathway = high resistance = low current intensity

Parallel circuit = 2 pathways = low resistance = high current intensity

Power and Energy Formulas

What will occur to power and energy results if voltage from the power supply is kept constant and the same resistors are used in a series vs a parallel circuit?

The series circuit will have a lower power and energy then the parallel circuit because the current intensity value will be lower since there is a higher resistance.

Understanding values: using two 50 Ω resistors and PS set to 4 V.

	Resistance (Ω)	Current intensity (A)	Voltage (V)
Series	100	.04	4
Parallel	25	. 14	4

T • 6		6.44		
Power	Power	Energy		Energy
series	parallel	series	1306	parallel
.4x4° 1.4 U	.16x464 W	42422 .60		.164921

Recap:

0.47

series = high resistance= low CI = low power and energy parallel = low resistance = high CI = high power and energy

Past exam questions

- Jeremy assembled an electrical circuit using a 6 V battery and a resistor. He measured a current intensity of 0.05 A in this circuit.
- a- What is the resistance of this circuit?

b- If the 6 V battery is replaced with a battery with a greater potential difference (voltage), and the same resistor is used, what will happen to the electric current intensity in this circuit?

1-The electric current intensity will increase

- 2- The electric current intensity will decrease
- 3- The electric current intensity will remain he same
- 2. The following circuit has a power source and a resistor.

Which of the following correctly describes a consequence of a change made to one of the components of this circuit?

- 1) The potential difference across the terminals of the resistor will increase if a 10 Ω resistor is used instead.
- 2) The current intensity of the circuit will increase if a 10 Ω resistor is used instead.
- 3) The resistance will remain the same even if the potential difference across the terminals of the source is increased.
- 4) The current intensity of the circuit will remain the same even if the potential difference across the terminals of the power source is increased without changing the resistor.
- 5) The current intensity of the circuit will increase if the potential difference across the terminals of the power source is increased without changing the resistor.

A)2 and 3 (C)2, 3 and 5

B) 1 and 3 D) 1, 3 and 5

- 3. A student takes two $15\,\Omega$ resistors and places them is a series. He sets the power supply to 20 V and takes the current intensity measurement from the power source. He then uses the same resistors and places them in a parallel. If he keeps the voltage still at 20V, what should happen to the current intensity value when he measures it from the power source
- A) The current intensity value will increase because there is more resistance in a parallel circuit.
- (B) The current intensity value will increase because there is less resistance in a parallel circuit
- C) The current intensity value will decrease because there is more resistance in a parallel circuit.
- D) The current intensity value will decrease because there is less resistance in a parallel circuit.