Stoichiometry worksheet

1.	Consider	the	followi	ing	equation:	
----	----------	-----	---------	-----	-----------	--

 $3 \text{ Ag} + 4 \text{ HNO}_3 \rightarrow 3 \text{ AgNO}_3 + \text{NO} + 2 \text{H}_2\text{O}$

What mass of nitric acid, HNO3, is necessary to obtain n 6 moles of water?

6 mal Hato, 4 mal Hatos 63.029 HNO3 8009 HNO3
2 mal Hato Imal Hatos

$$2 H_2 + O_2 \rightarrow 2 H_2O$$

a- If 4.0 moles of H₂ gas are reacted, how many grams of water would be produced?

G 4.0 nol Hz × Znol HzO × 18.025 HzO - 729 HzO 2nol Hz Inol HzO - 729 HzO

b- If
$$2.45 \times 10^2$$
 molecules of oxygen gas are available, how many moles of H_2 would react with it?

G 2.45×10 molec Oz × Inol Oz × 2 mel Hz 8.14×10 molec Oz Inol Oz Hz

3. What would the final volume be of water when a 5.5 M solution is needed to react with 12 g of HCl? The equation that represents the reaction follows. NaHCO₃ + HCl \rightarrow NaCl + H₂O + CO₂

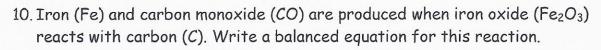
129 HCl x 1 nol HCl x 1 nol H20 = 0.329127811nol = 55 nol 1 nol HCl X 1 L

4. a- Balance the equation below: $2AI + 3F_2 \rightarrow 2AIF_3$ b- How many moles of aluminum react with 4.5 moles of fluorine? $4.5 \text{ mol } F_2 \neq \frac{2 \text{ mol } AI}{3 \text{ mol } F_2} $
c- If 42 g of aluminum fluoride, AIF3 are produced, what mass of aluminum is reacted with aluminum fluoride? 2 SAIF3 x Incl AIF3 x 2 mal AI x 26.98 sAI = (138 AI) 83. 98 AIF3 2 mal AIF3 I mal AI
d- How many moles of fluorine will take part in the above reaction to produce 33.6 g of aluminum fluoride? 33.65 A15, Incl A153 x 3nd Fz 83.985 A153 Znd A153
5. Kim uses 50 mL of Pb(NO ₃) ₂ at a concentration of 4.5 mol/L, what is the mass produced of sodium iodide (NaI)? Using the following equation: $ \frac{\chi}{L} = \frac{\chi}{0.050_2} \text{ NaI} + \text{Pb(NO_3)}_2 \rightarrow \text{PbI}_2 + 2 \text{Na(NO_3)} $ $ \frac{225 \text{ nel Bb(NO_3)}_2}{ \text{nel Pb(NO_3)}_2} \times \frac{2 \text{nel NaI}}{ \text{nel Pb(NO_3)}_2} \times \frac{149.85_{\text{SULI}}}{ \text{nel NaI}} = \frac{703}{ \text{NaI}} \text{NaI} $
6. a-Write a balanced equation for the combustion of methane gas (CH ₄) to form carbon dioxide (CO ₂) and water vapour (H ₂ O). 202 + CH+ > CO ₂ + ZH ₂ O
b- If 124.5 g of CO2 is produced, how many moles of CH4 must have been reacted? 124.53 CO2 x Incl CO2 Incl CH4 2.829 nd CH4

7. a- Write a balanced equation for the reaction of nitrogen gas (N_2) and hydrogen gas (H_2) to produce ammonia gas (NH_3) .

b-If 212.5 g of ammonia gas is produced, how many molecules of hydrogen gas must have reacted with the nitrogen?

8. 120 mL of CH_3COONa is used to produce H_2O . If 9.81g of H_2O is made, what is the concentration of CH_3COONa used? The following equation represents the reaction:


 $NaHCO_3$ (s) + CH_3COOH (aq) \rightarrow CH_3COONa (aq) + CO_2 (g) + H_2O (l)

9.815 tho, Ind 1420 x Ind CH3 COONE = 0.544395117mol 18.029 H2D Ind the . 12L

9. Solid copper can be prepared from copper oxide by reacting with ammonia, according to the following unbalanced equation:

3 CuO +2NH $_3$ \rightarrow N $_2$ +3Cu +3H $_2$ O How many moles of ammonia(NH $_3$) are needed to obtain 9.0 moles of copper (Cu)?

9.0 mdCu × ZnolNH3 (6.0 molNH3)
3molCu

You would like to produce 50 mol if iron, what mass of iron oxide is required?

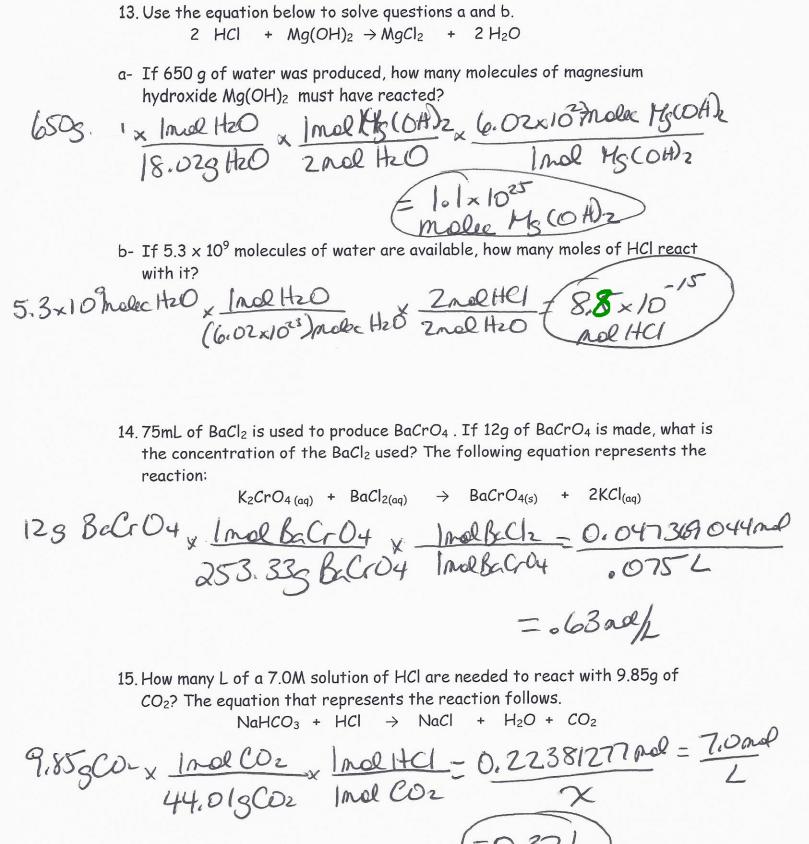
50mol Fe I mol Fez 03 x 159. 3 Fez 03 4 4000g

2 mol Fe I mel Fez 03 Fez 03

11. 300 mL of NaI whose concentration is 3 mol/L are reacted with Pb(NO₃)₂ in order to obtain the precipitate PbI₂. Calculate the moles of PbI₂ obtained. $3 \text{ NaI} + \text{Pb}(\text{NO}_3)_2 \rightarrow \text{PbI}_2 + 2 \text{ Na}(\text{NO}_3)$

9 molher I mal Plotz = 5 mol PloTz

2 mol Nat


12. When a solution of aluminum hydroxide, $Al(OH)_3$, reacts with a solution of sulfuric acid, H_2SO_4 , the result is a salt, aluminum sulphate, $Al_2(SO_4)_3$ and water, H_2O .

The reaction is seen by the following unbalanced equation:

 $2 \text{ Al}(OH)_3 + 3 \text{H}_2 SO_4 \rightarrow \text{Al}_2(SO_4)_3 + 6 \text{H}_2O$

What mass of aluminum hydroxide is required to produce 100.0 g of aluminum sulphate?

100.09 Alz (SOL)3 | nol Alz (SOL)3 | 2 nol AlCOH)3 | 78.019 AlCOH)3 | 342.175 Alz (SOL)3 | 1 nol Alz (SOL)3 | 1 nol Alz (SOL)3 | 45.609 | AlCOH)3)

T(4.22 42 ⁷ 1 1 1 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
a- If 4.33×10^7 molecules of Ag are a	ıvailable, how many m	oles of silver nitrate
AgNO₃ would react with it?		
4.33x107molecAs x Inol As x.	Znol AS NO	£ 7.19x10 nd
4.55x10/1000cis x.1/100145 x.	Znal As	T AgNOS/
(6,02x10) mele As	4.00	

 $Cu + 2 AqNO_3 \rightarrow Cu(NO_3)_2 + 2 Aq$

16. Use the equation below to answer questions a and b.

b- If 450.0 g of copper nitrate $Cu(NO_3)_2$ was produced, how many Ag atoms must have reacted with the copper nitrate?

450. $U_S Cu(NO_3)_2 \times \frac{1}{87.50} Cu(NO_3)_2 \frac{2}{1} \frac{2}{1} \frac{1}{1} \frac{1}{$

17. Kim neutralizes 250 mL of HCL at a concentration of 4.5mol/L using Ca(OH)_2 according to the following equation: 2HCl + Ca(OH)_2 \rightarrow CaCl_2 + 2 H_2O

What is the mass of the CaCl2 that will be left in the beaker?

1= C=V 45 mol. 25L= 1.125 mol 1.125 mol Helx Inolacle x 110.978 Calle (629 2 mol Hel x Inolacle Inolacle Calle