Stoichiometry Class notes

4 types of questions

1. According to the equation below, adding copper (Cu) to silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ allows a chemical reaction to occur that produces silver (Ag) and copper nitrate $\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)$.

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
$$

a- Gram to gram question (steps 1-4)

You need 2.0 g of silver (Ag) for an experiment. What mass of the silver nitrate will you require to obtain the 2.0 g of silver that you need?

b- Gram to moles question (steps 1-3)

You need 2.0 g of silver (Ag) for an experiment. How many moles of the Cu will you require to obtain the 2.0 g of silver that you need?

c- Moles to gram question (steps 1, 3 and 4)

You have 1.5 moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, what mass of AgNO_{3} was needed for the reaction to occur?

d- Moles to moles question (steps 1 and 3)

You have 3.0 moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, how many moles of AgNO_{3} was needed for the reaction to occur?

Atoms and molecules questions - 4 types

2. According to the equation below, adding copper (Cu) to silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ allows a chemical reaction to occur that produces silver (Ag) and copper nitrate $\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)$.

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
$$

A- Atom (or molecules) to grams (Steps 1-4)

If 3.33×10^{7} atoms of Cu are available, how many grams of silver nitrate AgNO_{3} would react with it?

B- Grams to atoms (or molecule) (Steps 1-4)

If 400.0 g of copper nitrate $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ was produced, how many Cu atoms must have reacted with the copper nitrate?

C- Atoms (or molecules) to moles (Steps 1-3)

If $7.5 \times 10^{4} \mathrm{Ag}$ atoms are available, how many moles of silver nitrate AgNO_{3} would react with it?

D- Moles to molecules (or atoms) (steps 1, 3 and 4)

If 3.0 moles of Cu were used in the reaction, how many molecules of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ would be produced?

Mole and stoichiometry combination questions

3. 'Given' not in problem, must find given to solve question
200.0 mL of Nal whose concentration is 2.0 M are reacted with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in order to obtain the precipitate PbI_{2}. Calculate the mass of PbI_{2} obtained.
```
Nal + Pb(NO3)}\mp@subsup{)}{2}{}->\mp@subsup{\textrm{PbI}}{2}{}+\textrm{Na}(\mp@subsup{\textrm{NO}}{3}{}
```

4. Looking for molar concentration $\mathrm{mol} / \mathrm{L}$

75 mL of BaCl_{2} is used to produce BaCrO_{4}. If 4.81 g of BaCrO_{4} is made, what is the concentration of the BaCl_{2} used? The following equation represents the reaction:

$$
\mathrm{K}_{2} \mathrm{CrO}_{4(\mathrm{aq})}+\mathrm{BaCl}_{2(\mathrm{aq})} \rightarrow \mathrm{BaCrO}_{4(\mathrm{~s})}+2 \mathrm{KCl}_{(\mathrm{aq})}
$$

5. Looking for volume L

What volume of a 6.0 M solution of HCl are needed to react with 4.85 g of NaHCO_{3} ? The equation that represents the reaction follows.

$$
\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Practice Questions

1. To neutralize hydrochloric acid (HCl), magnesium hydroxide $\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)$, a base is added. The neutralization reaction is represented by the following equation:

$$
\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

a- You have 4.0 moles of HCl , what mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ is required to neutralize the 4.0 moles of HCl ?
b- You have 4.0 moles of HCl , how many moles of $\mathrm{H}_{2} \mathrm{O}$ is required to neutralize the 4 moles of HCl ?
2. The following equation describes how iron oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, is produced.

$$
\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

How much $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is formed by the complete oxidation of 448 g of iron?
3. Using the formula $\mathrm{CuO}+\mathrm{NH}_{3} \rightarrow \mathrm{~N}_{2}+\mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}$ How many moles of ammonia $\left(\mathrm{NH}_{3}\right)$ are needed to obtain 7.00 g of copper (Cu)?
4. Use the equation below to solve questions A and B

$$
\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a- If 700.0 g of water was produced, how many molecules of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ must have reacted with the oxygen?
b- If 3.3×10^{9} molecules of HCl are available, how many moles of water react with it?

