https://www.youtube.com/watch?v=rc5G04nJecl

https://www.youtube.com/watch?v=SZ7X2mrUj6o

Atoms, molecules and holy Mole (y)!!!

What is a mole?

- a unit of measurement
- 6.02 x 10²³ particles (Avogadro's number) make up a mole (602 hexillion)

This is AvoGADRO'S NUMBER
602,200,000,000,000,000,000
(thank goodness our paper is wide enough!)

a HUGE number!!!!!!!

- 1 mol \$ = each person on Earth gets 200 000 billion \$ (multiply 1 dollar bill by 6.02 x10²³)
- 1 mol peas = 250 planets the size of Earth, 1m deep
- 1 mol blood cells = > all blood cells in all humans on Earth
- 1 mol sand = all sand on Miami Beach
- 1 mol inches = 8 round trips of the galaxy

The difference between atoms and molecules:

- Ca = an atom, no chemical bond
- CaCl₂ or O₂ = a molecule (more than one atom bonded together)

A dozen donuts = 12 A dozen bagels = 12

1 cup of sugar = 236 1 cup of rice = 255

1 mole of Cu = 602 × 10

1 mole of Zn =

1 mole of $CaCl_2 = 6.02 \times 10^{3}$ 1 mole of $O_2 = 6.02 \times 10^{3}$

- Does the dozen donuts weigh the same as the dozen bagels? No
- Does 1 cup of sugar weigh the same as 1 cup of rice? No
- Does 1 mole Cu weigh the same as 1 mole of Zn? N₀

https://www.youtube.com/watch?v=TEl4jeETVmg

https://www.youtube.com/watch?v=KAAG0oQ76xw

Molar Mass

https://www.youtube.com/watch?v=b2raqnVWU6c

- mass of one mole of a substance measured in g/mol
- molar mass of compounds add up molar masses of each individual atoms. Use atomic mass on PT.

Cachen	KE + co mount	CaCO₃
12.018/10.	39.10 + 19.00 58.10 9/ml	40.08 12.01 16.00 x5 100.07 3/ml

Molar Mass of water = 18.02 g/mol

1 mol of $H_2O = 6.02x10^{23}$ molecules

In 18.02 g of water there are 6.02x10²³ molecules.

How do we know these are the right quantities?

Moles formulas

Mole formula #1	Mole formula #2
n = m/mm	n = C x V
 n= moles,unit is mol m= mass,unit is g mm= molar mass, unit is g/mol 	 n= moles, unit is mol C= molarity, molar concentraion or solution, unit is mol/L or M V= volume, unit is L
Use when mass given in word problem	 Use when mol/L given in problem Can also be solved using a ratio instead of formula
mates (ma) M mass M M M C (P)	Costile Volume L

Things to MEMORIZE

- Molarity and molar concentration means the same thing. Unit is mol/L or M.
- Volume question unit must be in L.
- Atom or molecule question 6.02 x 10²³ must be used in answer.
- If there is a 'g' unit if the question the formula n=m/mm is always used first.
- If there is a 'mol/L' unit in the question it can be solved using n = C x V or as a ratio.
- To convert mL to L ÷ by 1000
- To convert mg to g ÷ 1000

Austin_Powers_THE_MOLE.mp4

Austin_Powers_THE_MOLE.mp4