Mole Notes

What is a mole?

-
-

The difference between atoms, molecules, and compounds:

atoms	$\mathrm{Ca}, \mathrm{Na}, \mathrm{P}$	
molecules	$\mathrm{O}_{2}, \mathrm{CO}_{2}$	
compounds	$\mathrm{CO}_{2}, \mathrm{NaCl}$	

A dozen donuts, bagels or eggs $=\quad$ A cup of sugar, rice or milk=
A mole of $\mathrm{Cu}, \mathrm{Zn}, \mathrm{CaCl}_{2}$ or $\mathrm{O}_{2}=$
Why the same number? \qquad

- Does the dozen donuts weigh the same as the dozen bagels?
- Does 1 cup of sugar weigh the same as 1 cup of rice?
- Does 1 mole Cu weigh the same as 1 mole of Zn ?

Molar Mass

- mass of one mole of a substance measured in $\mathrm{g} / \mathrm{mol}$
- molar mass of compounds - add up molar masses of each individual atoms. Use atomic mass on PT

C	KF	CaCO_{3}

Find the molar mass of the following:

NaCl	PCl_{3}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{H}_{2} \mathrm{O}$

Moles of Particles

In one mole of a substance, there are 6×10^{23} particles

How can all the above be equal to 1 mole and have different quantities?

How do I know how much mass each of the above pictures have?

Moles Formulas

Mole formula \#1	

Things to MEMORIZE

- Molarity and molar concentration means the same thing. Unit is mol/L or M.
- Volume question unit must be in L.
- Atom or molecule question you must multiply answer by 6.02×10^{23}.
- If there is a ' g ' unit if the question the formula $n=m / m m$ is always used first.
- If there is a 'mol/L' unit in the question it can be solved using $\mathrm{n}=\mathrm{CxV}$ or as a ratio.
- To convert mL to $\mathrm{L} \div$ by 1000
- To convert mg to $\mathrm{g} \div 1000$

