Specific Heat Worksheet

1. A beaker contains 610.0 g of water at 15.0°C. After being heated for 22 minutes the
water's temperature rose to 48.0°C. Calculate the heat energy absorbed.
W=MCDT 610 x4,19x (48,0-15,0)
= (84 3005)
2. A beaker contains 270 g of water at 15°C. The water absorbs 24 000 J of energy. What is
the water's final temperature?
FT=IT+OT NT=Q 24000
15+21= DT=Q 24000 15+21= mc (270x4.19)= 21°C
(36%)
3. Oil has a specific heat capacity of 2.0 J/g.°C. If 200 g of oil absorbs 5 005 J of heat energy
to reach a final temperature of 40.0°C, what was its initial temperature?
40.0-10 DI- 0 - 10°C
40.0-10 =(30°C) ST=Q 5005 mc (200x 2.0) = 10°C
4. A beaker contains 405 g of water at 19°C. After being heated for 42 minutes the water's
temperature reaches 55°C. Calculate the heat energy absorbed.
Q=MCBT 405x4.15 x (55-19)
(610005)
5. You pour 250 ml of water into a glass just out of the freezer. After a while, you notice
that the temperature of the water has fallen from 18°C to 12°C.
a- Is this an energy transfer or transformation?
b- Calculate the heat energy transfer.
Q=mcot 250 x4.19 x (12-18) = (-63005)
c- Explain if the water gives off or absorbs energy.
Water is warmen so gives If heat.
d- Explain of the glass gave off or absorbed energy.
glass was colder so absorbed heat.

6. Sy	rup has a s	specific heat capacity of 1.3 J/g.°C. If 200 g of syrup absorbs 5 000 J of heat
		ach a final temperature of 55°C, what was its initial temperature?
II-F		T 17-10 5000
55-	20	MC (200 × 1,3) = 200
90	EUD	mc (200 × 1,3)
7. W	hat is the r	mass of water if it absorbs 65 000 J of heat energy to go from a temperature
of	75°C to 94	1°C?
	= Q	(0.500)
/ /	ATO	$\left(\frac{65000}{(94-75)\times4.19}\right) = 8200$
8. W		ey's specific heat if 90.0 g are heated for 18.0 minutes and experience a
ter	mperature	change of 40.0°C absorbing 7 500.0 J of heat?
0	(O	<i>— 1</i>
C=		7500.0 - 2.08 g.°C
r	nst	(90.0×40.0)= 2.00 1g° C
9. Wa	ater's speci	ific heat is 4.19 J/g.°C. Olive oil's specific heat is 1.9 J/g.°C.
		ne would get hotter faster? Oli Je oil
b-	Which on	ne would keep its heat for longer? WATER
C-	Why wou	Ild we put water in a car's cooling system over olive oil?
WATER	, ha	o a higher SH: takes longer to absor
ha	2t s	get hot. Will not over heat
10. Ho	rseshoes a	re made of different metals and are shaped using high temperatures. To
soli	idify the m	netal, horseshoes are dipped into water to rapidly cool them. A horseshoe
wa	s heated to	o 452°C. It was then dipped into 0.50 kg of water at a temperature of 22°C.
After the h	orseshoe v	was removed from the water, the temperature of the water had increased
and the wa	ater had ab	psorbed 2 514 J of energy. What was the final temperature of the water?
1=114	-01	DT=Q 2514 = 1200
220.	+1.2:	=(23°C) mc (500x4,A)=12°C
11. A m	naterial scie	entist is testing the properties of different wires. In one of his experiments,
a 0.	056 kg thir	n metallic wire was heated and its temperature increased by 48.5°C. In
ord	er to heat	the wire, 1 032 J of energy was absorbed. The specific heat capacity of
diff	erent meta	als are listed below. Which of the wires below was tested?
Specific		acity of different metal wires.
	Metal	Specific heat capacity (J/g °C)
(A)	W	0.38 MAT (0.48)
(C)	X	0.13 (56×78×)
D)	Z	0.44
D)		380.0
		00015