Measurement and significant figures

The Quality of Experimental Results

Accurate but not precise

Accurate and precise

Which digits are significant?

- Rule #1: All non-zero numbers are significant.
 24 has two sig figs, 24.1 has 3 sf
- Rule #2: All zeros bounded by non-zero numbers are significant. (Sandwiched)
 200 004 has 6 sig figs, 200.04 has 5 sf
- Rule #3: Zeros placed before other digits (leading zeros) are not significant.
 0.024 has 2 sf -0.0000045 has 2 sf
- Rule #4: Zeros at the end of a number (trailing zero's) are significant ONLY if they come after a decimal point (and a significant digit).

 2.40 has three sf
 2.400 has 4 sf
 240, 2 400 and 24 000 all have 2 sf

 L Not of text decimal

0.050 🔪	0.003500 4
300 900 4	0.916 3
4.67 x 10 ⁻⁷ 3	0.200 3
45.030	5 234 000 🕂
35 000 🚨	150 000 001 <mark>9</mark>
0.0044004	460 090 5
16.8090 6	50.00300 7
	300 900 4 4.67 x 10 ⁻⁷ 3 45.030 5 35 000 2 0.0044004

Rules for Multiplication and Division

To determine how many sig figs your final answer should have, you must use the number with the **least** amount of sf in the question that is being multiplied or divided.

Ex 1-
$$15.0 \times 4.515 \times 1376 = 93 \ 189.6$$
 --> $93 \ 200$
Ex 2- $0.003 \times 0.050 \times 0.04 = 0.000006$ --> 0.600006
Ex 3- $45.56 \times 134.04 \times 0.340 = 2076.3332$ --> 2080
Ex 4- $34.56 \times 14 \times 134.020 = 64844.2368$ --> $65 \ 000$

Exceptions and Rules

1. Rounding off and keeping a zero as a significant digit

 $\frac{8253.0569}{12.7} = 649.847$

 In this example you must keep 3 sig figs in your answer.

When rounding off 649.847 should become 650.

Problem, 650 only has 2 sig figs
Solution: put a – above the zero, this makes it significant. -->

Or use Scientific Notation --> 6.50 x10²

2. Converting units

• When converting units, sig figs need to be maintained.

Ex 1- 4.0 cm to m becomes Ex 2- 1250 mL to L becomes

0.040 m

3. Constants (a fixed number)

• When there is a constant in a formula, the constant does not count as a significant figure.

ex: Coulomb's constant 9 x 10⁹ Nm²/C² ex: Earth's Gravitational Constant 9.807 m/s²

ex: π (pi) 3.1415926535897932384626433832795028 84197

^Technically, it has 39 sig figs because it has 39 digits

However, it is a constant, so we do not consider its number of sig figs in an equation

Ex: Find the circumference of a circle with a radius of 2.0 m. 3

 $C = 2\pi r$

 $C = 2\pi(2.0)$

C = 12.56637 m (we only want 2 sf)

c= 13 m (2 SF)

(we ignored the '2' and the ' π '. We only considered the '2.0' for sf)

SIG FIGS

1. How many sig figs are in each of the following numbers?

b)
$$6.58 \times 10^7$$
 3 g) 2.9×10^{-3} \updownarrow

2. Solve using the correct number of significant figures.

d-
$$8.0 \times 10^5 \div 4.02 \times 10^9 =$$

$$\frac{3}{2}$$
 e- (1.23×10^5) (1.445×10^7) ÷ 0.023 =

$$7.727608696 \times 10^{13} -> 7.7 \cdot 10^{13}$$