Particle Model and Balancing Equations Pre Quiz /28

Multiple Choice- 4 marks each /20

- 1. Which of the following chemical equations is balanced correctly?
- A) $5 \text{ HI} + \text{HIO}_3 \rightarrow 3 \text{ H}_2\text{O} + 3 \text{ I}_2$
- B) $HI + 6 HIO_3 \rightarrow 3 H_2O + I_2$
- C) HI + HIO₃ \rightarrow H₂O + I₂
- D) $6 \text{ HI} + \text{HIO}_3 \rightarrow 3 \text{ H}_2\text{O} + 3 \text{ I}_2$
- 2. Galena is an ore that contains lead sulfide (PbS). To extract lead from galena, the ore is first heated in the presence of dioxygen (O₂). The balanced equation of this reaction is:

$$2 \text{ PbS} + 3 \text{ O}_2 \rightarrow 2 \text{ PbO} + 2 \text{ SO}_2$$

Which of the models below represents this reaction?

lead : sulfur : oxygen : O

- 3. Which of the following chemical equations is correctly balanced?
- A) $CH_4 + O_2 \rightarrow CO_2 + 2 H_2O$
- B) $2 \text{ Na} + \text{H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$
- C) $V_2O_5 + 5 CaS \rightarrow 5 CaO + V_2S_5$
- D) NaBr + Pb(ClO₄)₂ \rightarrow NaClO₄ + PbBr₂

4.	The following is the unbalance water (H ₂ O):	ed equation for a chemical	reaction involving iron	(Fe) and
	$Fe + H_2O \rightarrow Fe_2O_3 + H_2$			
	In its reduced form, what is the coefficient of hydrogen in the balanced equation form?			
A)	3 B) 6	C) 2	D) 1	

5. When 12.5 g of calcium carbonate (CaCO₃) reacts with a certain amount of sodium chloride (NaCl), 13.9 g of calcium chloride (CaCl₂) and 13.2 g of sodium carbonate (Na₂CO₃) are produced.

The balanced equation for this reaction is as follows:

 $CaCO_{3(aq)}$ + 2 $NaCl_{(aq)}$ \rightarrow $CaCl_{2(aq)}$ + $Na_2CO_{3(s)}$

What is the mass of the sodium chloride (NaCl) involved in this reaction?

Short Answer /8

6. Four unbalanced chemical equations are given below. Balance these equations by including the coefficients so that the equations are in their simplest form. /4

a)
$$Mg_{(s)} + O_{2(g)} \rightarrow MgO_{(s)}$$

b)
$$NaOH_{(aq)} + H_3PO_{4(aq)} \rightarrow Na_3PO_{4(aq)} + H_2O_{(l)}$$

c) Fe +
$$Cl_2 \rightarrow FeCl_3$$

$$\text{d)} \qquad \qquad \text{FeS}_2 \quad + \quad O_2 \quad \longrightarrow \quad \text{Fe}_2 O_3 \quad + \quad SO_2$$

7. Ammonia gas, NH₃, is used extensively in industry. It is prepared according to the following chemical equation:

$$N_{2(g)} \quad + \quad \ 3 \ H_{2(g)} \quad \rightarrow \quad \ 2 \ NH_{3(g)}$$

Ammonium nitrates, NH₄NO₃, is an organic compound used in agriculture and is prepared using NH₃ gas and nitric acid, HNO₃, as follows:

$$NH_{3(g)} \quad + \quad HNO_{3(aq)} \quad \rightarrow \quad NH_4NO_{3(aq)}$$

In an industrial process, 28 kg of nitrogen gas, N_2 , reacts with 6 kg of hydrogen gas. H_2 , to produce NH_3 . This amount of NH_3 , is then reacted with 126 kg of HNO_3 to produce NH_4NO_3 . What was the mass of NH_4NO_3 ? /4