## Half-Life - Enriched

| Def |  |
|-----|--|
|     |  |
|     |  |

## Info:

- Could be short, as little as 0.16 seconds to decay or long, 1 300 000 years.
- Each radioactive element has its own half-life, it is characteristic.

## Decay of Carbon - 14



**Example 1- Determining length of the half life** 

Using the charts below, determine the half-life of each substance.

| Day       | Time | % In system |
|-----------|------|-------------|
| Friday    | 2pm  | 100         |
| Sat       | 8pm  | 50          |
| Monday    | 2am  | 25          |
| Tuesday   | 8am  | 12.5        |
| Wednesday | 2pm  | 6.25        |
| Thursday  | 8pm  | 3.125       |
| Saturday  | 2am  | 1.5625      |
| Sunday    | 8am  | 0.78125     |





**Example 2-** Te 130's half-life is 7 days. How long would it take to have less than 1 g of Te left if you start with 35.0 g? What percentage of Te would be left? How many half-lives have passed?

| ½ life (days) | Number of half lives | Mass (g) | Percent (%) |
|---------------|----------------------|----------|-------------|
|               |                      |          |             |
|               |                      |          |             |
|               |                      |          |             |
|               |                      |          |             |
|               |                      |          |             |
|               |                      |          |             |
|               |                      |          |             |

**Example 3-** Polonium's half-life is 0.16 s. You have 10.0 g, how long would it take you to have less than 2 g? What % will be left?

| ½ life (seconds) Number of half liv |  | Mass (g) | Percent (%) |
|-------------------------------------|--|----------|-------------|
|                                     |  |          |             |
|                                     |  |          |             |
|                                     |  |          |             |
|                                     |  |          |             |

**Example 4-** You found 7.0 g of a radioactive substance you think is 70 000 years old. Would it be better to use carbon-14 which has a half-life of 5 770 years or plutonium with a half-life of 24 000 years to date the object?

| Carbon 14  |       |        |             | Plutonium  |
|------------|-------|--------|-------------|------------|
| ½ life (y) | Mass  | # of ½ | Percent (%) | ½ life (y) |
|            | (g)   | lives  |             |            |
| 0          | 7     | 0      | 100         | 0          |
| 5770       | 3.5   | 1      | 50          | 24 000     |
| 11 540     | 1.8   | 2      | 25          | 48 000     |
| 17 310     | .9    | 3      | 12.5        | 72 000     |
| 23 080     | .45   | 4      | 6.3         |            |
| 28 850     | 2.3   | 5      | 3.1         |            |
| 34 620     | .12   | 6      | 1.6         |            |
| 40 390     | .060  | 7      | .78         |            |
| 46 160     | .030  | 8      | .39         |            |
| 51 930     | .0015 | 9      | .20         |            |

## Past exam Question:

- 1. Radioactive isotopes can be used to date archaeological artefacts. Carbon 14, <sup>14</sup>C, is often used for this purpose. It was used to establish the date of the Viking artefacts found in Newfoundland. Which of the following statements best describes why <sup>14</sup>C is useful in dating historical artefacts?

  A) <sup>14</sup>C is a radioactive isotope and accumulates over time with a predictable half-life.

  B) <sup>14</sup>C is a radioactive isotope and decays over time with a predictable half-life.

  - C) <sup>14</sup>C is a radioactive isotope which is produced in artefacts as they decay.
  - D) <sup>14</sup>C is chemically unreactive and remains unchanged over time.
- 2. A radioactive substance has a half-life of 30 minutes. What fraction of the atoms will not have decayed after 2 hours?